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Abstract

Peselnick, Meister, and Watt have developed rigorous methods for bounding elastic constants of

random polycrystals based on the Hashin-Shtrikman variational principles. In particular, a fairly

complex set of equations that amounts to an algorithm has been presented previously for finding

the bounds on effective elastic moduli for polycrystals having hexagonal, trigonal, and tetragonal

symmetries. The more analytical approach developed here, although based on the same ideas,

results in a new set of compact formulas for all the cases considered. Once these formulas have been

established, it is then straightforward to perform what could be considered an analytic continuation

of the formulas (into the region of parameter space between the bounds) that can subsequently be

used to provide self-consistent estimates for the elastic constants in all cases. These self-consistent

estimates are easily shown (essentially by construction) to lie within the bounds for all the choices

of crystal symmetry considered. Estimates obtained this way are quite comparable to those found

by the Gubernatis and Krumhansl CPA (coherent potential approximation), but do not require

any computations of scattering coefficients.
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I. INTRODUCTION

Polycrystalline materials such as water ice and quenched volcanic melts occur in nature

and such as powder compacts have been developed extensively by industry. So, for both

scientific and engineering purposes, it is important to be able to characterize the mechanical

behavior of the very great variety of polycrystalline solid media of interest. Estimates

of elastic constants came first [1, 2], to be followed later by Hill’s discovery [3] that the

same estimates were in fact rigorous, if somewhat crude, bounds on the constants. The

Hashin-Shtrikman bounds [4] were then developed using some new variational principles to

provide improved bounds for polycrystals of cubic solids. These variational methods were

subsequently used to provide improved rigorous bounds for many of the most important

crystal symmetry classes [5–7]. However, the main estimates used for polycrystals are still

the Voigt-Reuss-Hill averages [8], as suggested by Hill in his original paper [3] on the subject.

So the question arises now whether there are better estimates available, perhaps based on

the information contained in the bounds themselves. One approach to the finding an answer

to this question is the subject of the present work.

There have been previous efforts to obtain self-consistent estimates by (among others)

Kroner [9] and Gubernatis and Krumhansl [10] of the elastic constants for polycrystals.

In particular, Gubernatis and Krumhansl [10] derived a set of self-consistent formulas using

scattering theory. Their results are in the same class of approximations as the CPA (coherent

potential approximation) [11] used successsfully in estimating densities of states and band

structures in disordered binary alloys. Although it is beyond our current scope to determine

the relationship (if any) between the present work and the earlier approaches using the CPA,

ultimately we will conjecture that the present results are probably numerically equivalent

to CPA, at least in the symmetry classes studied so far. (In fact, the numerical evidence

so far shows that they are roughly equivalent.) Furthermore, it has been shown in another

context [12] that two such approaches to the problem of estimating elastic constants for two-

component random composites are exactly equivalent. Nevertheless, the present approach

gives a quite different insight into the polycrystal analysis and coefficient estimation problem,

and we believe it therefore has inherent merit based on this criterion alone. Furthermore,

since the estimates obtained are derived from the bounds, there is obviously little need to

check to see if the bounds are being satisfied. There is also no need to compute scattering
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coefficients with the present methods.

The next section presents the stress-strain relations for the hexagonal, trigonal, and

tetragonal symmetries to be considered here. Appendices A and B review known bounds,

including the Voigt [1] and Reuss [2] bounds as well as the Peselnick-Meister-Watt (PMW)

bounds [4–7], based on the Hashin-Shtrikman variational principles. The third section in

the main text uses the results of these two Appendices to reformulate the PMW bounds and

arrive at the desired analytic formulas for them. The fourth section then uses these formulas

to construct self-consistent estimates for random polycrystals. The fifth section presents

some examples making use of both bounds and estimates. The sixth section summarizes

our conclusions.

II. STRESS-STRAIN RELATIONS FOR THE THREE SYMMETRY CLASSES

The members of the class of crystal symmetries considered here have their stress-strain

relations given in the form:
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, (1)

where σij are the usual stress components for i, j = 1 − 3 in Cartesian coordinates, with

3 (or z) being the axis of symmetry. Displacement ui is then related to strain component

eij by eij = ∂ui/∂xj + ∂uj/∂xi, when i 6= j, and eii = ∂ui/∂xi when i = j. For trigonal

symmetry all of these constants shown are nonzero, but c66 = (c11 − c12)/2. Both hexagonal

and tetragonal symmetries have c14 = 0, while hexagonal again has c66 = (c11 − c12)/2, but

tetragonal symmetry does not share this restriction.

III. ELASTIC CONSTANT BOUNDS FOR THE MODEL

Voigt and Reuss bounds [1, 2] for the three crystal symmetry classes studied in this paper

are reviewed in Appendix A. These bounds also help to motivate a pair of product formulas
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that will be used extensively in the following discussion.

A. SIMPLIFIED BOUNDS ON BULK MODULUS

The formulas for the Hashin-Shtrikman-type bounds on polycrystals [4] of grains hav-

ing hexagonal, trigonal, and tetragonal symmetries are summarized in Appendix B. These

bounds were derived originally by Peselnick and Meister [5] and Meister and Peselnick [6]

with some corrections appended later by Watt and Peselnick [7]. The presentation of these

bounds is fairly complex, and so we will describe them as being expressed “algorithmically”

– rather than as formulas. What we mean by this statement is that this way of presenting

the results is sufficiently opaque that it is not at all obvious how to use such bounds to pro-

duce – for example – a set of self-consistent effective medium approximations based on them.

So, in order to gain the insight needed to deduce (in an operational sense) effective medium

approximations based on such bounds, it is most helpful to have analytical formulas. Indeed,

the usual self-consistency conditions basically require an analytic continuation of a formula

(or in elasticity a pair of coupled formulas) in order to achieve a successful approximation.

Thus, it will be our goal to find appropriate analytic formulas for bulk modulus here and,

in the next subsection, also for shear modulus.

The main observation that helps us to find such formulas in this case is based on the

easily verified facts (using the notation from Appendix B) that

1 + 2β±G± = −2β±ζ± (2)

where β± are defined in (38) and ζ± are defined by

ζ± =
G±

6

(

9K± + 8G±

K± + 2G±

)

. (3)

In (3), the values G± and K± are those given in Appendix B, having the significance of the

shear and bulk moduli of the isotropic comparison material used in the Hashin-Shtrikman

bounds. As one example, consider hexagonal symmetry: for the values in (3) and Appendix

B, we typically have G− = c44 and G+ = c66. Then, the values of K± are computed from

(44)-(48).

To obtain the desired result for bulk modulus, first rearrange (36) into the form

K±

PM =
KV + K±2β±(G± − Gv

eff)

1 + 2β±(G± − Gv
eff)

, (4)
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where Gv
eff (Gv

eff) is the uniaxial shear energy per unit volume for a unit applied shear strain

(stress). [See [13, 14] and/or Appendix A for more discussion.] Then, making use of (44),

we have

K±

PM =
KV [1 + 2β±(G± − Gr

eff)]

1 + 2β±(G± − Gv
eff)

. (5)

And, finally, substituting (2) into (5), we obtain the desired result:

K±

PM =
KV (Gr

eff + ζ±)

(Gv
eff + ζ±)

. (6)

These formulas are the simplified versions of the Peselnick-Meister-Watt (PMW) bounds,

which are rigorous bounds derived from the Hashin-Shtrikman variational principles for

random polycrystals. The same results for bulk modulus are valid for all three symmetry

classes considered here. Also, note that, for cubic symmetry [4], KV = KR implies Gr
eff =

Gv
eff , so K±

PM ≡ KV .

The functional ζ(G±, K±) ≡ ζ± is monotonic in both arguments G± and K±. As K±

ranges from 0 to ∞ for fixed G±, ζ± lies in the bounded range 2
3
G± ≤ ζ± ≤ 3

2
G±. As G±

varies from 0 to ∞, ζ± also ranges from 0 to ∞. In particular, when ζ− = 0, (6) shows that

K−

PM = KR, (7)

which follows from the product formula KV Gr
eff/Gv

eff = KR. When ζ+ = ∞, (6) shows that

K+
PM = KV . (8)

These two expressions are obviously the lower and upper bounds on K given by Reuss and

Voigt, respectively. Thus, this analytical formula parameterizes the bounds in terms of the

ζ±, which are still determined by the formulas given for G± and K± in Appendix B. But, as

we will soon see, the formula (6) has the advantage that it is also easy to use as the basis

for an effective medium approximation.

B. SIMPLIFIED BOUNDS ON SHEAR MODULUS

To find the simplified version of (37) for the overall shear modulus, we first shift G± to

the left hand side, then multiply by −2β±, and finally add unity to both sides of the result.

We find that

[1 + 2β±(G± − µ±

PM)] =
1

1 + 2β±B±

2

. (9)
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Using (2) to simplify the left hand side, we then have

µ±

PM + ζ± = −
1

2β±(1 + 2β±B±

2 )
. (10)

The right hand side of (10) can be greatly simplified for all three symmetry classes, but unlike

the bulk modulus, the resulting formulas are distinct — i.e., depending on the symmetry

class. When this (rather tedious algebra) has been completed for hexagonal symmetry, the

formula (10) can be inverted to give

1

µ±

hex + ζ±
=

1

5

[

1 − α±(KV − K±)

Gv
eff + ζ± + α±

2β±
(KV − K±)

+
2

c44 + ζ±
+

2

c66 + ζ±

]

. (11)

For the hexagonal case, the formula (11) reduces correctly to (21) as ζ+ → ∞ and to (24)

as ζ− → 0, i.e., the Voigt and Reuss bounds on the polycrystal’s overall shear modulus. The

result for ζ+ → ∞ is obtained from a standard limiting process. Some extra steps in the

ζ− → 0 calculation are: K− → KR, α− → −1/KR, and β− → ∞. The expected result (24)

is then obtained because KV /Gv
effKR = 1/Gr

eff follows from the product formulas. Terms

identical to the complicated first one here on the right hand side appear in the formulas

for all symmetry classes. This form cannot be simplified further because the Voigt and

Reuss bounds depend on the (usually distinct) factors Gv
eff and Gr

eff , respectively. This term

provides the essential link, or interpolation formula if you like, between these limits.

The analogous steps carried through for the trigonal case give:

1

µ±

trig + ζ±
=

1

5

[

1 − α±(KV − K±)

Gv
eff + ζ± + α±

2β±
(KV − K±)

+
2

µ1 + ζ±
+

2

µ2 + ζ±

]

, (12)

where µ1 and µ2 are defined in equations (27) and (28).

For tetragonal symmetry, the result is:

1

µ±

tetr + ζ±
=

1

5

[

1 − α±(KV − K±)

Gv
eff + ζ± + α±

2β±
(KV − K±)

+
1

µ3 + ζ±
+

2

c44 + ζ±
+

1

c66 + ζ±

]

, (13)

where µ3 ≡ (c11 − c12)/2.

Cubic symmetry requires c11 = c22 = c33, c12 = c13 = c23, c44 = c55 = c66. This

symmetry class may therefore be viewed as a special case of the tetragonal symmetry class.

As such, we can immediately write the results for the bounds. It was already noted that

K±

PM = K± ≡ KV for cubic symmetry. Furthermore, Gv
eff = Gr

eff = µ3 = 1
2
(c11 − c12). So

(13) becomes
1

µ±

cub + ζ±
=

1

5

[

2

Gv
eff + ζ±

+
3

c44 + ζ±

]

. (14)
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It is not difficult to verify that these bounds are identical to those found originally by Hashin

and Shtrikman [4] for this case.

The uniaxial shear energies Gv
eff and Gr

eff play a strong role (and essentially the same role)

in all these formulas even though only rarely are they simply related to eigenvalues of the

elastic system equations.

IV. SELF-CONSISTENT ESTIMATES OBTAINED FROM THE BOUNDS

We are now in position to create some useful effective medium approximations based

on the formulas for the rigorous bounds (6) and (11)-(14) derived in the previous section.

In each case the choices to be made seem quite apparent based both on the form of these

bounds, and on prior experiences with other bounds and self-consistent estimates [12]. The

resulting formulas obtained this way will be called the “self-consistent” or SC estimates

based on these bounds from the Hashin-Shtrikman variational principles.

We take the self-consistent estimate for bulk modulus to be

K∗ =
KV (Gr

eff + ζ∗)

(Gv
eff + ζ∗)

=
(Gv

effKR + ζ∗KV )

(Gv
eff + ζ∗)

, (15)

where

ζ∗ =
µ∗

6

(

9K∗ + 8µ∗

K∗ + 2µ∗

)

. (16)

In (16), K∗ is determined by (15), µ∗ is determined by the self-consistent expression for the

shear modulus to follow, and ζ∗ is then determined by (16). The formulas (15) and (16)

are true for all three symmetry classes, but the final results will differ by symmetry because

the formulas for µ∗ to follow differ. In fact, for hexagonal symmetry µ∗ is obtained similarly

from (11) and we have

1

µ∗

hex + ζ∗
=

1

5

[

1 − α∗(KV − K∗)

Gv
eff + ζ∗ + α∗

2β∗ (KV − K∗)
+

2

c44 + ζ∗
+

2

c66 + ζ∗

]

. (17)

Then, for trigonal symmetry, (12) gives:

1

µ∗

trig + ζ∗
=

1

5

[

1 − α∗(KV − K∗)

Gv
eff + ζ∗ + α∗

2β∗ (KV − K∗)
+

2

µ1 + ζ∗
+

2

µ2 + ζ∗

]

. (18)

Finally, for tetragonal symmetry, we have from (13):

1

µ∗
tetr + ζ∗

=
1

5

[

1 − α∗(KV − K∗)

Gv
eff + ζ∗ + α∗

2β∗ (KV − K∗)
+

1

µ3 + ζ∗
+

2

c44 + ζ∗
+

1

c66 + ζ∗

]

. (19)
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As pointed out previously, cubic symmetry is a special case of tetragonal symmetry and

so the self-consistent formulation for cubic does not require separate treatment.

In all cases, these formulas are obtained by replacing the terms in the bounds everywhere

so that K± → K∗ and G± → µ∗. The result is a set of coupled equations that are most

conveniently solved by numerical iteration.

This iteration process is expected to converge rapidly to definite unique answers for

both K∗ and µ∗, and especially so when it can be shown that the individual formulas

are monotonic functionals of their arguments. It is well-known that ζ∗ = ζ(µ∗, K∗) is a

monotonic functional of both arguments [12]. It is also quite easy to check using (15) that

K∗ is a monotonic functional of ζ∗. Since K∗ ≤ KV will always be satisfied, µ∗ is easily shown

for all three crystal symmetries to be a monotonic functional of ζ∗. The only remaining issue

to check is whether µ∗ is also a monotonic functional of K∗. A rather tedious analysis (which

will therefore not be shown here) indicates that µ∗ is indeed a monotonic functional of K∗ as

long as µ∗ ≤ Gv
eff . However, since Gv

eff is not the overall Voigt average of the shear modulus

(but rather the energy per unit volume of the uniaxial shear component), this relationship

does not have to be obeyed. (Note: Trigonal arsenic and all the cubic materials considered

here are examples admitting violation of the condition µ∗ ≤ Gv
eff . Hexagonal and tetragonal

materials tend to obey this condition, while the results for trigonal symmetry are mixed.)

The examples show that in fact convergence is very quick when this condition is satisfied,

but it is not always satisfied. When it is not, then the convergence may be much slower,

but nevertheless convergence has always been attained in all the examples computed. For

comparison purposes, we display the values of Gv
eff in all the following examples in order to

provide quantitative verification of these comments.

V. EXAMPLES AND DISCUSSION

A. Examples

The theoretical ideas in the preceding text will be tested now using laboratory data in

this section. All the data presented here were taken at nominal room temperature or at 300

K unless otherwise stated.

For hexagonal symmetry (Tables 1 and 2), we present examples for water ice, magne-
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sium, cobalt, and graphite. The single-crystal data for ice (at 257 K) are from Jona and

Scherrer [15] and Huntington [16]. (Comparable, but somewhat smaller, values for ice are

found in Kneer [17] and Hearmon [18].) The single-crystal data for magnesium and cobalt

are from Hearmon [18]. The data for graphite A are from Blakslee et al. [19], who quote a

range of values for c44 = 0.18 to 0.35 GPa. The data for graphite B are from Hearmon et al.

[18], who quotes exactly the same values except for c44 = 4 GPa. (We use this case as an

example of how data uncertainty propagates through the equations in the Discussion subsec-

tion.) Data for polycrystalline ice shown in the Table 2 are from Gammon et al. [20, 21].

Earlier data on polycrystalline ice lie in the same range [22, 23]. Data for polycrystalline

magnesium are from Krautkrämer [24].

For trigonal symmetry (Tables 3 and 4), we present examples for bismuth, antimony,

arsenic, calcite, and corundum. The single-crystal data for bismuth, antimony, and barsenic

were taken from Pace et al [25]. Single-crystal data for calcite were taken from Hearmon

[18]. Single-crystal data for corundum were taken from Anderson and Isaak [26]. Data for

polycrystalline bismuth are from Krautkrämer [24]. Polycrystal data for corundum were

found in Thomsen [8] (high values) and in Mavko et al. [27] (low values). Mavko et al. [27]

list five different values for the polycrystal data on calcite; of these, we show the two highest

values for both bulk and shear modulus.

For tetragonal symmetry (Tables 5 and 6), we present examples for urea, mercurous

chloride, tin, and titanium dioxide (rutile). The single-crystal data for urea are from Fischer

and Zarembowitch [28]. The single-crystal data for mercurous chloride were from Sil’vestrova

et al. [29], and are very similar to the data in Hearmon [18]. The single-crystal data for

tin and for titanium dioxide are from Hearmon [18]. Data for polycrystalline tin are from

Krautkrämer [24]. Polycrystal data for titanium dioxide (rutile) were found in Thomsen [8]

(low values) and in Mavko et al. [27] (high values).

For cubic symmetry (Tables 7 and 8), we present examples for aluminum, gold, copper,

germanium, α-iron, magnesium oxide (magnesia), and spinel. The single-crystal data and

polycrystal data for copper, gold, and α-iron were taken from the original Hashin and

Shtrikman paper [4], so direct comparisons could be made to their results. Single-crystal

data for gold and α-iron are the same as in Kneer [17]. Single-crystal data for aluminum

were taken from Valin et al. [30]. Single-crystal data for germanium and magnesium oxide

were taken from Huntington [16]. Single crystal data for spinel (MgAl2O4) were taken from
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Hearmon [18]. For bulk modulus the first value listed is the same as KV , since this is a

measured value based on the measured single crystal values. Primary polycrystal data for

magnesium oxide and secondary for spinel were found in Thomsen [8]. Secondary polycrystal

data for aluminum, germanium, α=iron, and magnesium oxide, and spinel are from Anderson

[31]. Secondary values of polycrystal data for gold and copper are from Krautkrämer [24].

Results quoted by Gubernatis and Krumhansl [10] for Al and Cu agree well with the

present results, but were not identical. Agreement was precise for the bulk modulus, but

the results obtained here were not quite as stiff in shear as those obtained by Gubernatis

and Krumhansl [10]. Although we conjecture that the present self-consistent method should

be equivalent to the CPA, so far the results only confirm that they are roughly equivalent.

Observed differences may be due to slightly different single-crystal input values, to errors in

the computations (such as using insufficient precision or failure to iterate to convergence),

or to some more fundamental difference between the two approaches.
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Table 1. Elastic stiffness constants of the hexagonal crystals for water ice (at 257 K),

magnesium, cobalt, and graphite. Units for all constants are GPa.

H2O Mg Co Graphite A Graphite B

c11 13.84 59.3 295. 1060. 1060.

c12 7.07 25.7 159. 180. 180.

c13 5.81 21.4 111. 15.0 15.0

c33 14.99 61.5 335. 36.5 36.5

c44 3.19 16.4 71. 0.26 4.0
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Table 2. Measured and estimated elastic stiffness constants for polycrystalline aggregates

of the hexagonal crystals of water ice, cobalt, magnesium, and graphite. Single-crystal

constants used in the calculations are found in Table 1. Units for all constants are GPa.

H2O Mg Co Graphite A Graphite B

Kmeas 8.90 35.5 – – –

KR 8.89 35.2 187.4 35.8 35.8

K−

HS 8.89 35.2 187.4 36.2 42.0

KSC 8.89 35.2 187.4 91.0 100.0

K+
HS 8.89 35.2 187.4 204.2 204.2

KV 8.89 35.2 187.4 286.3 286.3

µmeas 3.52 15.8 – – –

µR 3.48 17.2 75.3 0.65 9.2

µ−

HS 3.52 17.3 76.6 1.21 14.8

µSC 3.52 17.3 76.6 56.9 71.2

µ+
HS 3.52 17.3 77.0 146.2 148.9

µV 3.55 17.4 78.3 217.8 219.4

Gv
eff 4.61 20.4 113.3 208.8 208.8
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Table 3. Elastic stiffness constants of the trigonal crystals for bismuth, antimony, arsenic,

calcite, and corundum. All constants are in units of GPa.

Bi Sb As CaCO3 Al2O3

c11 63.22 99.4 123.6 144. 497.2

c12 24.42 30.9 19.70 53.9 162.8

c13 24.40 26.4 62.30 51.1 116.0

c14 7.20 21.6 - 4.16 -20.5 -21.9

c33 38.11 44.5 59.11 84.0 500.8

c44 11.30 39.5 22.57 33.5 146.7
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Table 4. Measured and estimated elastic stiffness constants for polycrystalline aggregates

of the trigonal crystals of bismuth, antimony, arsenic, calcite, and corundum. Single-crystal

constants used in the calculations are found in Table 3. Units of all constants are GPa.

Bi Sb As CaCO3 Al2O3

Kmeas 30.8 – – 76.8/74.8 255.1/252.9

KR 32.44 38.74 57.46 70.6 253.5

K−

HS 33.37 41.60 60.63 73.0 253.7

KSC 33.64 42.84 65.48 73.7 253.7

K+
HS 33.89 43.82 65.77 74.4 253.7

KV 34.55 45.63 66.10 76.0 253.9

µmeas 11.9 – – 32.0/30.6 163.2/162.1

µR 10.79 21.85 7.25 27.1 160.7

µ−

HS 12.08 24.82 9.71 30.4 162.9

µSC 12.64 27.15 22.79 31.9 163.2

µ+
HS 13.00 28.46 25.27 32.8 163.6

µV 14.49 33.27 30.22 36.8 165.5

Gv
eff 11.04 18.97 2.05 26.9 199.6

µ1 23.61 58.61 52.53 60.6 181.1

µ2 7.09 15.09 21.99 18.0 132.8
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Table 5. Elastic stiffness constants of the tetragonal crystals for urea [CO(NH2)2],

mercurous chloride, tin, and titanium dioxide (rutile). All constants in units of GPa.

CO(NH2)2 Hg2Cl2 Sn TiO2

c11 21.7 18.93 73.2 270.

c12 8.9 17.19 59.8 176.

c13 24.0 15.63 39.1 147.

c33 53.2 80.37 90.6 480.

c44 6.26 8.46 21.9 124.

c66 0.45 12.25 23.8 193.
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Table 6. Measured and estimated elastic stiffness constants for polycrystalline aggregates

of the tetragonal crystals urea, mercurous chloride, tin, and titanium dioxide (rutile).

Single-crystal constants used in the calculations are found in Table 5. All constants in

units of GPa.

CO(NH2)2 Hg2Cl2 Sn TiO2

Kmeas – – 53.3 217.1/210.5

KR 11.6 17.97 57.0 209.

K−

HS 12.6 18.28 57.0 212.

KSC 16.7 19.65 57.0 213.

K+
HS 18.7 21.53 57.0 214.

KV 23.4 23.90 57.0 218.

µmeas – – 20.4 116.1/111.5

µR 1.67 3.26 15.6 99.5

µ−

HS 2.51 4.93 17.7 110.0

µSC 4.33 7.82 18.7 115.0

µ+
HS 4.33 9.11 19.0 117.0

µV 5.24 10.48 20.1 124.9

Gv
eff 6.83 22.39 26.3 136.3

µ3 6.40 0.87 6.7 47.0

16



Table 7. Single-crystal elastic stiffness constants of the cubic crystals aluminum, gold,

coper, germanium, α-iron, magnesium oxide (magnesia), and spinel. All constants in units

of GPa.

Al Au Cu Ge α-Fe MgO MgAl2O4

c11 107.3 186. 171.0 128.9 237. 286. 282.

c12 60.8 157. 122.0 48.3 141. 87. 154.

c44 28.3 42. 69.1 67.1 116. 148. 154.

Table 8. Measured and estimated elastic stiffness constants for polycrystalline aggregates

of the cubic crystals aluminum, gold, copper, germanium, α-iron, magnesium oxide

(magnesia), and spinel. Single-crystal constants used in the calculations are found in

Table 7. All constants in units of GPa.

Al Au Cu Ge α-Fe MgO MgAl2O4

Kmeas 76.3/74.0 167.0/165.6 138.0/136.0 75.2/75.1 173.0/159. 162.4/155.0 196.7/197.2

KV 76.3 167.0 138.0 75.2 173.0 162.4 196.7

µmeas 26.1/26.5 27.7/27.8 45.5/45.6 – 83.1/80.8 130.6/130.1 108.0/116.5

µR 26.0 23.9 40.0 53.0 74.0 123.9 98.6

µ−

HS 26.2 27.0 44.8 54.6 80.5 126.1 106.9

µSC 26.2 28.1 46.3 54.8 82.1 126.3 109.0

µ+
HS 26.2 28.6 47.2 54.9 83.1 126.4 110.3

µV 26.3 31.0 51.3 56.4 88.8 128.6 118.0

Gv
eff 23.3 14.5 24.5 40.3 48.0 99.5 64.0

B. Discussion

Convergence of the iteration scheme was monitored. Typically, a fixed number of 10

iterations was chosen, and the iterates were saved to a file. The results showed that the

iterates converged to six figures in either three or four iterations in most cases. The only
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exceptions noted were the two hexagonal graphite examples. Case B converged in about 30

iterations, while Case A required about 45 iterations to converge when the starting values

were the lower Hashin-Shtrikman bounds.

Data have been quoted here without specifying measurement uncertainty. Clearly, knowl-

edge of the single-crystal data uncertainty and error propagation through the formulas pre-

sented is important, but such studies are beyond our current scope. We provide one example

(hexagonal graphite) where this issue is addressed for just one of the elastic constant input

variables (c44) in order to provide some indication of how results might depend on these

uncertainties. Bulk modulus and the two upper bounds on shear modulus of graphite were

largely insensitive to the changes in c44, while the two lower bounds were quite sensitive to

them. These senitivities were also reflected in the self-consistent estimates for shear, but

not as strongly as in the lower bounds.

VI. CONCLUSIONS

The main technical accomplishment of the paper has been the reworking of the Peselnick-

Meister-Watt bounds into analytical formulas, thereby making the older work on bounding

elastic constants for polycrystals more accessible and easier to interpret. The motivation for

this work was, in part, the desire to obtain self-consistent estimates of the bulk and shear

moduli of random polycrystals. This goal was achieved quite easily once the new analytical

formulas were found.

Although we have not dwelled upon them here, there are examples of Hashin-Shtrikman

upper and lower bounds – as obtained from the work of Peselnick, Meister, and Watt [5–7]

on random polycrystals – that are so close together that no other estimates are needed for

practical purposes. Since the self-consistent estimates have the advantage that they are

always trapped between the bounds, they do just as well as the bounds in all such cases.

But it is clearly not these easy circumstances that have motivated the present work.

In contrast there are other cases where the bounds are far apart and, furthermore, the

Voigt-Reuss-Hill average [3] (e.g., µV RH ≡ 1
2
[µV + µR]) also does not fall between them.

(Trigonal arsenic is one example.) So, it would be helpful to have some other means of

producing an estimate. Clearly, some direct average (mean or geometric mean) of the

Hashin-Shtrikman bounds could be used in these circumstances, but it would perhaps be
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more helpful to have some estimate that is better motivated than such a quasi-Hill direct

average either of the formulas or of the algorithmically derived curves. The self-consistent

estimates obtained here were motivated in part by the desire to learn whether or not such

estimates might be found. The (now apparent) conclusion is that they can.

The resulting new formulas for both the bounds and the estimates also provide some

useful insight into what factors are important in determining both the bounds and the

estimates for each symmetry class. In particular, the eigenvalues of the elastic tensor always

appear prominently in these formulas. Furthermore, for those parts of the energy stored

in shear that do not relate simply to eigenvalues, the product formulas ([13] and Appendix

A) relating uniaxial shear energies to the Voigt and Reuss bounds on bulk modulus play

a particularly strong role in determining the results in all three of the symmetry classes

considered here. The physical reason why this must happen is that typically two of the

eigenvalues are for mixed modes — i.e., quasi-compressional and quasi-shear modes. The

quantities Gv
eff and Gr

eff specify those remaining parts of the shear energy that determine

the rigorous upper and lower bounds — both for the Voigt and Reuss bounds, which were

the sources of their definitions, and also those for the Hashin-Shtrikman bounds derived by

Peselnick, Meister and Watt, as has been shown here.

One complication not treated here concerns the very common occurrence of porosity

between grains in polycrystalline aggregates [8, 32, 33]. When the volume fraction of void

space is on the order of 0.5% or greater [32], the analysis presented here should be modified

to take into account the expected reduction in values of both bulk and shear moduli [33].

Whenever measured values of the effective overall constants of polycrystals are lower than

those expected/predicted by the Hashin-Shtrikman and Peselnick-Meister-Watt bounds, it

will often be reasonable to assume that the cause might be due to unaccounted for porosity

in the laboratory samples.

Future studies include (1) completing the analysis for the remaining crystal symmetry

classes, (2) doing a more careful comparison between these self-consistent estimates and

those of Gubernatis and Krumhansl [10], and (3) some more detailed measurement error

analyses.
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APPENDIX A: VOIGT AND REUSS BOUNDS AND A PRODUCT FORMULA IN

ELASTICITY

Hexagonal symmetry

For hexagonal symmetry, the nonzero stiffness constants are: c11, c12, c13 = c23, c33,

c44 = c55, and c66 = (c11 − c12)/2.

The Voigt average for bulk modulus of hexagonal systems is well-known to be

KV = [2(c11 + c12) + 4c13 + c33] /9. (20)

Similarly, for the shear modulus we have

µV =
1

5
(Gv

eff + 2c44 + 2c66) , (21)

where the new term appearing here is essentially defined by (21) and given explicitly by

Gv
eff = (c11 + c33 − 2c13 − c66)/3. (22)

The quantity Gv
eff is the energy per unit volume in a grain when a pure uniaxial shear strain

of unit magnitude is applied to the grain along its axis of symmetry [13].

The Reuss average for bulk modulus is determined by 1/KR = 2(s11 + s12) + 4s13 + s33,

which can also be written as

1

KR − c13

=
1

c11 − c66 − c13

+
1

c33 − c13

(23)

in terms of stiffness coefficients. The Reuss average for shear is

µR =

[

1

5

(

1

Gr
eff

+
2

c44

+
2

c66

)]−1

, (24)

which again may be taken as the definition of Gr
eff – i.e., the energy per unit volume in a

grain when a pure uniaxial shear stress of unit magnitude is applied to a grain along its axis

of symmetry.

We will use the following product formula as the formal definition of Gr
eff . For each

grain having hexagonal symmetry, two product formulas hold [13]: 3KRGv
eff = 3KV Gr

eff =

ω+ω−/2 = c33(c11 − c66)− c2
13. The symbols ω± stand for the quasi-compressional and quasi-

uniaxial-shear eigenvalues for the crystalline grains. Thus, Gr
eff = KRGv

eff/KV – a general

formula that holds for all three of the crystal symmetry types considered here, treating (21)

and (24) [or their equivalents for other symmetries] as the fundamental defining equations

for Gv
eff and Gr

eff , respectively.
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Trigonal symmetry

For trigonal symmetry (restricted to classses 32, 3̄m, 3m – see Nye [34]), the nonzero

stiffness constants are: c11, c12, c13 = c23, c14 = c56 = −c24, c33, c44 = c55, and again

c66 = (c11 − c12)/2.

For trigonal symmetry, the Voigt averages for bulk and shear moduli are again given by

(20) and (21). The Reuss average for bulk modulus can be expressed in terms of the product

formulas as

KR =
ω+ω−

6Gv
eff

, (25)

where Gv
eff is again given by (22). And we find that

µR =

[

1

5

(

1

Gr
eff

+
2

µ1

+
2

µ2

)]−1

, (26)

where

µ1 =
1

2

[

c44 + c66 +
(

[c44 − c66]
2 + 4c2

14

)
1

2

]

, (27)

µ2 =
1

2

[

c44 + c66 −
(

[c44 − c66]
2 + 4c2

14

)
1

2

]

, (28)

and

Gr
eff =

ω+ω−

6KV

. (29)

It is also instructive (and useful to the discussion in the main text) to note that (21) can

also be written for trigonal symmetry as

µV =
1

5
(Gv

eff + 2µ1 + 2µ2) . (30)

Tetragonal symmetry

For tetragonal symmetry (restricted to classses 4mm, 4̄2m, 422, 4/mmm – see Nye [34]),

the nonzero stiffness constants are: c11, c12, c13 = c23, c33, c44 = c55, and c66 (which is not

coupled to c11 and c12 as it was in the other two cases).

For tetragonal symmetry, the Voigt average for bulk modulus is again given by (20), while

the Voigt average for shear modulus is given now by

µV =
1

5

(

Gv
eff + µ3 + 2c44 + c66

)

, (31)
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where µ3 ≡ (c11 − c12)/2 and

Gv
eff = (c11 + c12 − 4c13 + 2c33) /6. (32)

(Note that the formulas for Gv
eff for both hexagonal and trigonal symmetry could have also

been written this way — but not vice versa.) The Reuss average for bulk modulus is again

given by (25), using the new definition of Gv
eff . Alternatively, we have

1

KR − c13

=
2

c11 + c12 − 2c13

+
1

c33 − c13

, (33)

a form which is also valid for hexagonal and trigonal symmetries, whereas (23) is not valid

for tetragonal symmetry. The Reuss average for shear modulus is

µR =

[

1

5

(

1

Gr
eff

+
1

µ3

+
2

c44

+
1

c66

)]−1

, (34)

where we again have

Gr
eff =

ω+ω−

6KV

, (35)

and where, for tetragonal symmetry, ω+ω− = [(c11 + c12)c33 − 2c2
13].

APPENDIX B: PESELNICK-MEISTER-WATT BOUNDS FOR HEXAGONAL,

TRIGONAL, AND TETRAGONAL SYMMETRIES

Hashin-Shtrikman-style bounds [35, 36] on the bulk and shear moduli of isotropic random

polycrystals composed of hexagonal, trigonal, and tetragonal grains have been derived by

Peselnick and Meister [5], with later corrections by Watt and Peselnick [7]. Notation used

is similar to that in the original Hashin-Shtrikman paper on random polycrystals of grains

having cubic symmetry [4]. We will use a silightly modified notation here, taking into

account the product formulas ([13] and Appendix A) in order to simplify the satatement of

the results. Derivations are found in the references, and therefore not repeated here.

Parameters used to optimize the Hashin-Shtrikman bounds are K± and G±, which have

the significance of being the bulk and shear moduli of two (±) isotropic comparison materials.

G+, K+ are the values used in the formulas for the upper bounds, and G−, K− for the lower

bounds. Formulas for the bounds are:

K±

PM = K± +
KV − K±

1 + 2β±(G± − Gv
eff)

, (36)
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and

µ±

PM = G± +
B±

2

1 + 2β±B±

2

, (37)

where

α± =
−1

K± + 4G±/3
, β± =

2α±

15
−

1

5G±

, γ± =
1

9
(α± − 3β±). (38)

The form of B±

2 depends on the crystal symmetry.

For hexagonal symmetry, we have

B±

2 =
1

5

[Gv
eff − G±

D±

+
2(c44 − G±)

1 − 2β±(c44 − G±)
+

2(c66 − G±)

1 − 2β±(c66 − G±)

]

, (39)

with

D± = 1 − β±(c11 + c12 + c33 − 3K± − 2G±) − 9γ±(KV − K±). (40)

Using the product formulas, (40) can be simplified to

D± = 1 − 2β±(Gv
eff − G±) − α±(KV − K±). (41)

For trigonal symmetry, we have

B±

2 =
1

5

[Gv
eff − G±

D±

+
2(µ1 − G±)

1 − 2β±(µ1 − G±)
+

2(µ2 − G±)

1 − 2β±(µ2 − G±)

]

, (42)

where D± is defined as in (41), but using the definitions of KV and Gv
eff appropriate for the

trigonal symmetry.

For tetragonal symmetry, we have

B±

2 =
1

5

[Gv
eff − G±

D±

+
(µ3 − G±)

1 − 2β±(µ3 − G±)
+

2(c44 − G±)

1 − 2β±(c44 − G±)
+

(c66 − G±)

1 − 2β±(c66 − G±)

]

, (43)

where D± is defined as in (41), but using the definitions of KV and Gv
eff appropriate for the

tetragonal symmetry.

Optimum values of the moduli for the comparison materials have been shown to be (in

the present notation)

K± =
KV (Gr

eff − G±)

(Gv
eff − G±)

, (44)

where, for K−,

0 ≤ G− ≤ min(c44, G
r
eff , c66) (hexagonal), (45)

0 ≤ G− ≤ min(µ2, G
r
eff) (trigonal), (46)

0 ≤ G− ≤ min(c44, µ3, G
r
eff , c66) (tetragonal). (47)
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Similarly, for the K+ formula,

max(c44, G
v
eff , c66) ≤ G+ ≤ ∞ (hexagonal), (48)

max(Gv
eff , µ1) ≤ G+ ≤ ∞ (trigonal), (49)

max(c44, µ3, G
v
eff , c66) ≤ G+ ≤ ∞ (tetragonal), (50)

Note that, when G− = 0, K− = KR, because KR = KV Gr
eff/Gv

eff from the product formulas

[13]. When G+ → ∞, K+ → KV .

Peselnick and Meister [5] had originally obtained all the results for hexagonal symmetry,

except for the additional condition in (45) that permits c44 to be replaced in some circum-

stances by Gr
eff . This new condition was added later by Watt and Peselnick [7]. For trigonal

symmetry, the general results µ2 ≤ min(c44, c66) and max(c44, c66) ≤ µ1, permitted simplifi-

cation of these expressions. For tetragonal symmetry, the conditions depending on µ3 were

also added by Watt and Peselnick [7].

Implementation issues

Equation (44) has an obvious singularity if it ever happens that G+ = Gv
eff . (The case

G− = Gv
eff will never occur except in the most trivial cases, where bounding methods are not

really required.) Since this does happen in practice (hexagonal cobalt, trigonal corundum,

and both tetragonal urea and mercurous chloride are four examples), it is necessary to modify

the numerical algorithm for the bounds slightly. To avoid this problem, it is sufficient (and

also consistent with spirit of the variational bounding methods) to make the replacement in

these cases G+ = Gv
eff +δ, where is δ is a small positive shift. This choice guarantees that the

result is still an upper bound, but avoids the singularity. Any positive shift on the order of

the experimental error in the crystalline elastic stiffness data should be sufficient to eliminate

this purely numerical difficulty, but the choice made will then be reflected directly in the

upper bounds on both bulk and shear modulus – so results presented here (for the upper

bounds in these cases) may differ slightly from those of Watt and Peselnick [7]. However,

this issue does not affect the final results for self-consistent estimates at all. It also means

the preferred choices of the starting values for the self-consistent iteration scheme are the

values for the lower PMW bounds on bulk and shear modulus, since these are unaffected by

this issue.
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The graphical structure of the algorithm for computing these bounds has been illustrated

previously by Watt and Peselnick [7] and more recently by Berryman [14].
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